Ejercicios Análisis I

Grado en Ciencias Físicas 2019-2020

Hoja 7: Cálculo integral.

- 1. Calcular, aplicando la definición: $\int_2^3 1 dx$, $\int_2^3 x dx$ $\int_2^3 x^2 dx$.
- **2.** Probar que la función f(x) = [x] es integrable en [0,5] y calcular $\int_0^5 [x] dx$.
- 3. Expresa como integrales los siguientes límites:

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{2\,n+k}\,,\qquad\qquad \lim_{n\to\infty}\sum_{k=1}^n\frac{k\,(n-k)}{n^3}\,,\qquad\qquad \lim_{n\to\infty}\sum_{k=1}^n\frac{n^2}{n^3+n\,k^2}$$

- **4.** Sea f una función continua en [a,b], no negativa y que cumple $\int_a^b f(x)\,dx=0$. Probar que f es cero en todos los puntos.
- **5.** Dar un ejemplo de una función f definida en un intervalo [a,b], no integrable y tal que f^2 sea integrable.
 - **6.** Demostrar que, para cada $c \in \mathbb{R}$ se verifica:

$$\int_{a}^{b} f(x+c) \, dx = \int_{a+c}^{b+c} f(x) \, dx \,,$$

y, cuando $c \neq 0$,

$$\int_{a}^{b} f(cx) \, dx = \frac{1}{c} \int_{ac}^{bc} f(x) \, dx.$$

7. Sea

$$f(x) = \begin{cases} x, & \text{si} \quad x \in [0, 1], \\ x + 1, & \text{si} \quad x \in (1, 2]. \end{cases}$$

Definimos F con F(0) = 0 y

$$F(x) = \int_0^x f(t) dt$$
, si $x \in (0, 2]$.

Determinar F de forma explícita y probar que es continua en el intervalo [0,2], aunque f no lo sea.

8. Sea f una función continua en [a,b]. Definimos la media o valor esperado de f sobre [a,b] como

$$E(f) = \frac{1}{b-a} \int_a^b f(x) \, dx \, .$$

A. Sean M y m respectivamente el máximo y el mínimo de f sobre [a,b]. Demostrar que $m \le E(f) \le M$. Si f es constante, ¿cuál es su valor esperado?

B. Usando el teorema de los valores intermedios y el apartado anterior probar el siguiente resultado: dada f, una función continua en [a,b], existe $\xi \in [a,b]$ tal que

$$\frac{1}{b-a} \int_a^b f(x) \, dx = f(\xi) \, .$$

9. (*) Estudia el dominio de definición y la derivabilidad de las siguientes funciones:

$$F(x) = \int_0^{x^2} \sin t^2 \cdot \log(1 + t^2) dt, \qquad G(x) = \int_{-e^x}^{\sin^2 x} \cos \log(2t^2) dt.$$

10. Encontrar una función f definida y continua en $[0, +\infty)$ y tal que

$$\int_0^{x^2} (1+t) f(t) dt = 6 x^4.$$

11. Sea $f:[1,+\infty)\longrightarrow \mathbb{R}$ una función continua, acotada y tal que $f(x)\geq 1$ en todo $x \geq 1$. Calcular razonadamente el siguiente límite, demostrando que se puede utilizar la Regla de L'Hôpital:

$$\lim_{x \to +\infty} \frac{1}{x} \int_{1}^{x^2} \frac{f(t)}{t} dt.$$

12. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f(x) = -1 + \int_0^{x^2} \frac{e^{t^2}}{1+t^2} dt$$

2

Estudiar razonadamente el número de soluciones de la ecuación f(x) = 0.

13. Evaluar las siguientes integrales indefinidas:

1.
$$\int x (6x^2 - 8)^{25} dx$$
. 2. $\int \frac{dx}{(x^2 - 1)^2}$.

$$2. \quad \int \frac{dx}{(x^2-1)^2}$$

3.
$$\int \frac{x}{(x^2-1)^2} dx$$
. 4. $\int \frac{dx}{(x^2+2)^2}$.

$$4. \quad \int \frac{dx}{(x^2+2)^2}$$

$$5. \quad \int \frac{x}{1+x^4} \, dx \, .$$

$$6. \quad \int \frac{dx}{\sqrt[3]{x} + \sqrt{x}} \, .$$

7.
$$\int \frac{dx}{\cos x}.$$

8.
$$\int \frac{dx}{\cos^3 x}.$$

9.
$$\int \log x \, dx$$
.

10.
$$\int x \, \log x \, dx.$$

$$11. \quad \int x^3 e^{-2x} \, dx$$

11.
$$\int x^3 e^{-2x} dx$$
. 12. $\int e^{3x} \cos 2x dx$.

13.
$$\int \sin^4 x \, \cos^6 x \, dx \, .$$
 14.
$$\int \arctan x \, dx \, .$$

14.
$$\int \arctan x \, dx$$

14. Calcula $\int \tan x \, dx$, $\int \tan^2 x \, dx$. Da una fórmula para $\int \tan^n x \, dx$ en términos de $\int \tan^{n-2} x \, dx$. Usa esto para calcular $\int \tan^4 x \, dx$, $\int \tan^5 x \, dx$.

15. Estudiar la convergencia de las siguientes integrales impropias y, si es el caso, calcular

A.
$$\int_0^{+\infty} e^{-\sqrt{x}} dx.$$

B.
$$\int_{2}^{+\infty} \frac{x}{x^2 - x - 2} dx.$$

C.
$$\int_{1}^{+\infty} \frac{x}{1+x^4} dx.$$
 D.
$$\int_{-\infty}^{+\infty} \frac{x}{4+x^2} dx.$$

D.
$$\int_{-\infty}^{+\infty} \frac{x}{4+x^2} dx$$

E.
$$\int_0^1 \frac{dx}{\sqrt{x(1-x)}}$$
. F. $\int_0^{+\infty} x^2 e^{-x} dx$.

F.
$$\int_0^{+\infty} x^2 e^{-x} dx$$
.

$$\mathsf{F.} \qquad \int_{-\infty}^{+\infty} \mathrm{e}^{-x^2} \, dx \, .$$

G.
$$\int_0^{1/2} \frac{dx}{x (-\log x)^{\alpha}}, \quad \alpha \in \mathbb{R}.$$

16. (*) Construcción de la función Gamma de Euler

A. Comprobar la fórmula de reducción

$$\int x^\alpha \,\mathrm{e}^{\beta\,x}\,dx = \frac{1}{\beta}\,x^\alpha \,\mathrm{e}^{\beta\,x} - \frac{\alpha}{\beta}\,\int x^{\alpha-1} \,\mathrm{e}^{\beta\,x}\,dx\,,$$

para $\alpha > 0$ y $\beta \neq 0$.

B. La función Γ se define para x > 0 mediante

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

Comprobar que se verifica

$$\Gamma(x+1) = x \, \Gamma(x) \, .$$

3

Deducir que $\Gamma(n+1) = n!$ para $n \in \mathbb{N}$.

Comentarios: (*) ejercicio difícil.